
1

Containers

As described in lecture 4 containers are a staple of packaging applications in a self-contained fashion. Linux

containers contain everything a Linux application needs to run on a Linux kernel in an isolated fashion. This

exercise will run you through the basics of packaging an application in a container and running it on a Linux

server.

This guide is an abridged version of “Getting started with Docker for the Inquisitive Mind” by Janos Pasztor, one of

the lecturers on this course. We highly recommend reading the original version for more detail.

Installing Docker

One of the most popular small-scale container runtimes, and indeed the first to popularize build recipes is Docker.

Docker can be installed on Linux as well as Windows and MacOS, but the latter two have several issues a user

needs to work around so we recommend using an Ubuntu Linux 20.04 virtual machine for the purposes of this

exercise.

To install Docker you can either follow the installation guide or use the convenience script to do so:

Please note that this script is not recommended for production use, but will be accepted in a solution to the project

work.

Creating a basic Dockerfile

In order to package an application you can create a Dockerfile containing the instructions to install the

dependencies and package an application. This file consists of the following format:

The first command is the FROM command. This command specifies which base image to use, for example:

As mentioned before, containers are not virtual machines. This command only pulls in the userland piece of an

Ubuntu system. It can be used to install libraries and packages required for an application to run.

As this file has now been created we can build our container image as follows:

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh

COMMAND PARAMETERS

FROM ubuntu:20.04

docker build -t myimagename .

The dot at the end is important! It tells Docker to look for the Dockerfile in the current directory.

Warning

2

../../lectures/4-containers/
https://pasztor.at/blog/docker-for-beginners/
https://www.docker.com/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/#install-using-the-convenience-script
../../projectwork/
../../projectwork/

Now that the image is built it can be launched:

Inside the container you can do operations just as you normally would. For example, you could run apt update ,

then apt install mc , and finally mc to launch the midnight commander. Once you are finished with the

interactive session you can use the exit command or Ctrl + D to exit.

However, as discussed in lecture 4 the main benefit containers bring to the table is reusability. If you treat a

container like you would treat a virtual machine, updating, installing things manually, you lose the main benefit of

using containers.

Let's extend our Dockerfile to install the nginx webserver:

There are two new commands here: the ENV and the RUN command. The ENV command instructs Docker to set

an environment variable. The DEBIAN_FRONTEND=noninteractive environment variable instructs the apt and

dpkg packaging utilities in Ubuntu to run in non-interactive mode and not ask questions. Instead, these

commands will use default values. The RUN command simply runs the specified command.

If you run the docker build . command now the build will fail:

As you can see, the apt install command is asking for permission to continue with the installation. This

teaches us an important aspect of containerization: the Dockerfile must contain only commands that run

automatically. Let's fix the file:

The -y is specific to apt and means that the user wishes to answer yes to everything.

OK, so let's run the build again:

docker run -ti myimagename

The -ti parameter is only required for interactive sessions. For non-interactive sessions it is not required.

Tip

FROM ubuntu:20.04

ENV DEBIAN_FRONTEND=noninteractive

RUN apt update
RUN apt install nginx

...
After this operation, 60.8 MB of additional disk space will be used.
Do you want to continue? [Y/n] Abort.
The command '/bin/sh -c apt install nginx' returned a non-zero code: 1

...
RUN apt install -y nginx

docker build -t mynginx .

3

../../lectures/4-containers/

So, we run our image:

The -p flag tells Docker to map the port 80 of the container to the port 80 of the host. This will allow you to

access the service on the IP address of your server. However, we didn't tell Docker to run nginx, so we receive a

shell and nothing else. Sure enough, we can start nginx manually, but that's not what we want. Before we exit our

container let's find out where nginx is located:

This will print the full path of the nginx binary which we will need in a moment. Let's exit the container with

Ctrl + D .

In order to make Docker actually run nginx we need to employ the CMD command in our Dockerfile :

A word about CMD

The CMD command has a second form: CMD nginx parameters here . In this form Docker cannot pass the

parameters directly to the underlying execv call that will ultimately launch the application. execv expects all

parameters in a separated list. The binary itself has to be passed as a full path as the first parameter.

To transform the CMD parameter Docker launches a shell in the container, for example Bash. This shell will then

parse the parameters and ultimately launch the desired program.

This may seem like a reasonable approach at first, but can cause problems. The first process in a container is

responsible for handling signals, such as the TERM signal that indicates that a process should stop gracefully.

Bash does not do this. Instead, Bash will ignore the signal and Docker will wait for 30 seconds and then forcefully

kill the container.

This is the same reason why you need to be careful when running a shell script in your CMD . If you want to do that

you must either handle signals correctly, or launch your subsequent program with the exec stanza. The exec

stanza replaces the current shell with the new program instead of launching a child process:

There is also a second command in Docker called ENTRYPOINT . The ENTRYPOINT command allows you to specify

an additional program that acts as a wrapper for CMD . Let's say you have the CMD from above, and you specify

...
 ---> 85e4def234e1
Successfully built 85e4def234e1

docker run -ti -p 80:80 mynginx

which nginx

CMD ["/usr/sbin/nginx"]

#!/bin/bash

set -e

Do some initialization here

exec /usr/sbin/nginx

4

https://linux.die.net/man/3/execv
https://man7.org/linux/man-pages/man7/signal.7.html

the ENTRYPOINT of /init.sh . In this case the full command that will be launched is /init.sh /usr/sbin/nginx .

In other words, the contents of CMD are passed to the ENTRYPOINT .

Getting nginx running

Back to the nginx example. If you launch the container you will see that it exits immediately. As mentioned before,

the first process in a container has a special role. This special role is not only to handle signals, but also extends

to running the container. If the first process exits the container will stop.

In our case, nginx is doing something called daemonization. Daemonization on Linux means that a process

launches a second copy of itself and exits from the first copy in order to give back control over the console to the

user. In a container we want exactly the opposite: we do not want nginx to daemonize. This is achieved by setting

the daemon off; parameter in the configuration file, or passing it via the command line:

If you now build and run the container you will see that it stays up and you can access the web service on the IP

address of your machine running Docker.

Applying configuration files

Having a container with only nginx in it is not very useful, so let's see how we can put some content on the web

server. First, let's figure out where the document root of our web server is. We do this by overriding the CMD for

out container and launching a shell in it:

This will land us in a shell inside a new container. In the container we can search for the document root:

This will give us the following result:

So, the document root is in /var/www/html . Let's create an index.html file which we will copy to the container

in the next step:

Copying files to the container:

If you rebuild and relaunch the container you will see that the default nginx page is replaced by our Hello world!

.

Before we proceed, let's document that our container exposes a service on port 80:

CMD ["/usr/sbin/nginx", "-g", "daemon off;"]

docker run -ti mynginx /bin/bash

grep -nr 'root ' /etc/nginx | grep -v '#'

/etc/nginx/sites-available/default:41: root /var/www/html;

<h1>Hello world!</h1>

COPY index.html /var/www/html/index.html

5

This is not strictly necessary and only serves a documentation purpose, but it is nevertheless useful.

Building a software in a container

To summarize: in order to containerize our application we need to install the dependencies of your application

(e.g. a web server), then copy your compiled application in your container, and then set your CMD to launch your

application.

You also have the option to compile your application inside the container. To avoid creating extremely large

containers with the build tools we will use multistage builds.

Let's create a very simple Go application in a file called main.go :

This program will launch a simple web server on port 8080. Let's also add a go.mod file to enable Go modules:

Let's create a Dockerfile that compiles this application:

In the next stage we will copy our compiled application from the first stage and run it:

EXPOSE 80

package main

import (
 "fmt"
 "log"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello world!")
}

func main() {
 http.HandleFunc("/", handler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

module github.com/yourusername/smaple

go 1.14

FROM alpine AS build
RUN apk add --update go
RUN mkdir -p /srv/myapp
WORKDIR /srv/myapp
COPY main.go .
COPY go.mod .
ENV CGO_ENABLED=0
RUN go build -tags netgo -a -v main.go
RUN chmod +x main

FROM alpine AS run
RUN apk add --no-cache libc6-compat
COPY --from=build /srv/myapp/main /app

6

https://docs.docker.com/develop/develop-images/multistage-build/

Finally, let's run it:

There you go! That's your app built and running in a single file. You can see a few additional commands above,

feel free to look them up in the official documentation.

Service discovery

Docker has a built-in service discovery model. Containers can address each other by their names as long as you

specify the --name parameter when creating or running the container, and the containers are attached to the

same network.

Let's take the following example:

In this case both A and B containers will be able to talk to each other over the network with their respective

names. Alternatively, you can also provide the --network option to docker run

Volumes

One last item we need to talk about are volumes. Containers are designed to be immutable. When a new version

comes along we simply destroy the existing container and create a new one. Some services like database,

however, need to store data in a persistent fashion. That's what we need volumes for.

In the container world we can mount volumes directly from the host machine, or we can mount a network-based

storage as discussed in the lectures. In our example we will showcase how to mount a volume from a local folder

using Docker.

Assuming we want to launch a webserver we can mount the document root from our previous example:

In this case the /srv/www folder of the host machine will be mounted in /var/www/html inside the container. This

can be used to persist data, but also during development when files change frequently.

Security hardening

One more aspect of containerization we need to talk about is security. With our configuration above our container

is running as root. While the container has a security boundary, running as root can still present a security risk. In

fact, enterprise Kubernetes setups like OpenShift do not allow containers to run as root.

CMD ["/app"]
EXPOSE 8080

docker build -t myapp .
docker run -d -p 8080:8080 myapp

docker run --name a -ti ubuntu
docker run --name b -ti ubuntu
docker network create test
docker network connect test a
docker network connect test b

docker run -d -p 80:80 -v /srv/www:/var/www/html mynginx

7

https://docs.docker.com/engine/reference/builder/
https://www.openshift.com/

Let's change our Go container so it doesn't run as root:

Note that we are specifying the user ID and group ID to run as in numeric form (1000). The USER command

allows user names to be passed as well, but in a hardened Kubernetes setup this will not be accepted.

...
FROM alpine AS run
RUN addgroup -S --gid 1000 app && adduser -S app --uid 1000 -G app
COPY --from=build /srv/myapp/main /app
CMD ["/app"]
USER 1000:1000
EXPOSE 8080

8

	Containers
	Installing Docker
	Creating a basic Dockerfile
	A word about CMD
	Getting nginx running
	Applying configuration files
	Building a software in a container
	Service discovery
	Volumes
	Security hardening

