

Grafana

Grafana is a common way to visualize information from multiple source systems, including Prometheus. It offers a
user friendly way to create graphs, alters, and display metrics.
Running Grafana

Like Prometheus before, Grafana can be run in a container:

docker run -d \
-p 3000:3000 \
grafana/grafana

This will launch Grafana on port 3000 of your node.

Setting up Grafana with Prometheus

Grafana is an aggregator for information from many different systems. Data sources can be configured in the
Configuration — Data sources menu on the left side. When adding a Prometheus data source you simply have to
provide Grafana with your Prometheus URL. If you did not deploy any additional changes in the previous exercise
you can leave everything else on default settings.

Data Sources / Prometheus

it Settings B8 Dashboards

This datasource was added by config and cannot be modified using the UI. Please contact your server admin to update this datasource.

Prometheus Default

URL http://prometheus:9090
Access Server (default)

Whitelisted Cookies

Creating a CPU graph

Once you have the data source set up you can create a new dashboard and add a panel. The panel can have
different visualization types, but will always draw its data from a query in the bottom box. Make sure to select the
Prometheus data source and you will be presented with an option to enter your PromQL query. In addition, you
can also provide sophisticated legend information, such as " to list the instance name.

https://grafana.com/
/exercises/4-prometheus

& New dashboard / Edit Panel Discard

Panel Field Overrides

Panel Title Settings
Panel title

Panel Title

Description

Transparent

Visualization
Display
Bars

0.0020 Lines
23:38:00 23:38:30 23:39:00 23:39:30 23:40:00 23:40:30 23:41:00 23:41:30 23:42:00 23:42:30

— 194.182.174.84:9100 Line width
Staircase

bl
B Query 44 Transform 4 Alert J——

Prometheus (6] Query optio Query inspector Fill gradient

Points

Metrics v sum by (i (rate(node_cpu_seconds_total{mode!="idle"}[1m])) / Stacking and null value

sum by (i (rate(node_cpu_seconds_total[im]) Stack

Legend {{ instance }} Min step Resolution Null value

Format Time series Instant Prometheus

Hover tooltip

+ Query Mode All series

Sort order None

On the right hand side you can adjust various display options, for example what range and display format the Axis'
should have in the graph.

Creating an alert

In the same interface as above you can create an alert. The alert will allow you to set an evaluation period to
determine how often the rule is evaluated. You can also set the For field to allow a grace period before the alert
triggers. The conditions give you a way to create a flexible set of rules when an alert should be triggered.

New dashboard / Edit Panel Discard

Panel Field Overrides

vars
Panel Title
Lines
Line width
Staircase
Area fill

Fill gradient

Points
Stacking and null value
Stack

Null value

Hover tooltip

O —
23:38:00 23:38:30 23:39:.00 23:39:30 234000 23:40:30 23:41:00 23:41:30 23:42:00 23:42:30

Mode All series

— 194.182.174.84:9100 Sort order None

B Query 43 Transform 4 Alert

Rule Series overrides

Name CPU usage Evaluate every Axes
LeftY

Show

Conditions Unit
EN query (A, 5m, now) B ! Scale
® Y-Min

Y-Max

No Data & Error Handling .
Decimals

If no data or all values are null No Data
Label

If execution error or timeout Alerting

Right Y

Notifications Show

Send to @ Scale up -
ni

You can also set up notifications to send the alert to various notification channels. This functionality can be used
to trigger the scaling behavior required in the project work.

Setting up a natification channel

Before you can set up an alert notification you have to create a notification channel. This can be done from the left
hand menu by going to Alerting — Notification channels. For the purposes of the project work the notification type
should be "webhook". The URL should point to your custom web server that triggers Exoscale to increase the
instance pool size. Finally, you should also set up the "Send reminders" option to keep triggering the scale up/
down behavior if the CPU usage is still high/low.

e Alerting

= Alert Rules 8 Notification channels

Edit Notification Channel

Name Scale up

Type webhook
Default (send on all alerts)
Include image

Disable Resolve Message

Send reminders

¢
¢

Send reminder every pinl

Alert reminders are sent after rules are evaluated. Therefore a reminder
can never be sent more frequently than a configured alert rule
evaluation interval.

Webhook settings
url http://autoscaler:8090/up
Http Method POST
Username

Password

Send Test

Deploying Grafana in an automated fashion

Since our project work revolves around Terraform we need a way to deploy Grafana with all settings in an
automated fashion. Thankfully, the Grafana developers have thought of this and provided us with a way to do that.

Provisioning data sources

To provision data sources we must place or mount the data source configuration file in the /etc/grafana/
provisioning/datasources/ directory inside the Grafana container in YAML format. For Prometheus this data
source could look like this:

apivVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: proxy
orgld: 1
url: http://prometheus:9090
version: 1
editable: false

Provisioning a notification channel

Notification channels can also be provisioned by placing the appropriate YAML file in /etc/grafana/

provisioning/notifiers/ :

notifiers:

- name: Scale up
type: webhook
uid: scale-up
org_id: 1

https://grafana.com/docs/grafana/latest/administration/provisioning/

is_default: false
send_reminder: true
disable_resolve_message: true
frequency: "2m"
settings:
autoResolve: true
httpMethod: "POST"
severity: "critical"
uploadImage: false
url: "http://autoscaler:8090/up"

Note, that the uid field of the notifier matters as this will be referenced from the dashboard.
Provisioning dashboards

Provisioning dashboards is slightly more complex. As a first step we must tell Grafana to look in a certain directory
for the dashboard configuration file. Grafana will periodically check this directory. This can be done from a YAML
file in the /etc/grafana/provisioning/dashboards/ directory:

apiVersion: 1

providers:
- name: 'Home'
orgId: 1
folder: ''
type: file
updateIntervalSeconds: 10
options:
path: /etc/grafana/dashboards

We can then place the dashboard JSON file in the specified directory. The easiest way to create a JSON file is to
manually create it in Grafana and then copy the JSON from the Grafana dashboard. Keep in mind that you may
have to adjust the JSON manually to match your notification channel uid values.

	Grafana
	Running Grafana
	Setting up Grafana with Prometheus
	Creating a CPU graph
	Creating an alert
	Setting up a notification channel
	Deploying Grafana in an automated fashion
	Provisioning data sources
	Provisioning a notification channel
	Provisioning dashboards

